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Abstract

We describe a newly-developed "artificial neural network" algorithm for solving constraint sat-

isfaction problems (CSPs) which includes a learning component that can significantly improve the

performance of the network from run to run. The network, referred to as the Guarded Discrete

Stochastic (GDS) network, is based on the discrete Hopfield network but differs from it primarily in
that auxiliary networks (guards) are asymmetrically coupled to the main network to enforce certain

types of constraints. Although the presence of asymmetric connections implies that the network

may not converge, we find that, for certain classes of problems, the network often quickly converges

to find satisficing solutions when they exist. The network can run efficiently on serial machines and
can find solutions to very large problems (e.g. N-queens for N as large as 1024). One advantage
of the network architecture is that network connection strengths need not be instantiated when

the network is established: they are needed only when a participating neural element transitions

from off to on. We have exploited this feature to devise a learning algorithm, based on consistency
techniques for discrete CSPs, that updates the network biases and connection strengths and thus

improves the network performance.

1 Introduction

Constraint satisfaction problems (CSPs) arise frequently in AI applications and have been investigated by many
researchers. Most of the commonly used methods for finding solutions to CSPs are based on backtracking tree
search or its variants. A variety of techniques have been utilized to make this type of search more efficient: these

include pre-processing the constraints, ordering the instantiation of variables, or making intelligent decisions
about how to backtrack when a deadend is encountered (see, e.g., [1,2,3,4]).

A very different approach has been taken by researchers investigating "artificial neural network" or "connec-

tionist" approaches to solving CSPs (e.g. [5,6]). In this type of approach the constraints are encoded in the
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networktopology and connection strengths so that the state of the network when it converges can be interpreted
as a solution to the CSP. The network dynamics can be described in terms of an "energy" function which the

network minimizes as it runs [7]. A problem with these methods is the tendency of the network to settle into

a local minimum of the energy function, representing a solution only to a sub-problem of the CSP. Techniques

for escaping from local minima are known [8,9] but tend to be time-consuming and thus greatly limit the size

of the problem that can be represented and solved. We have previously described a new network architecture

which circumvents some of these problems [10]. Our approach, which we call the Guarded Discrete Stochastic

(GDS) network, avoids local minima by coupling the main network to one or more fast-acting auxiliary (guard)

networks that enforce additional higher-order constraints. While this has the drawback that the network is no

longer guaranteed to converge to any stable configuration, we find that for a variety of problems the network

has a high probability of converging with sufficient speed that solutions to very large problems can be found
even on serial machines.

In the GDS network, as in other neural network approaches to CSPs, the problem is explicitly encoded in the

network when it is constructed. This is in contrast to the use of neural networks on other types of problems
where the network goes through a training phase to "]earn" the values of the connection strengths and biases

that are appropriate to the problem [9,11]. One advantage of the GDS network architecture and update scheme

is that the the connections can be treated as "virtual", i.e. the values of the connection strengths are not needed
until a participating neuron transitions from off to on. We have found that this can be used as the basis for

a learning algorithm that infers additional constraints only from instantiated connections. This can be viewed

as the network analog of "learning while searching" as successfully applied to backtracking tree search [12].

In the following (Section 2) we first briefly describe the GDS network architecture and update scheme from

[10]. We then describe the learning algorithm and present results for two CSPs that show how learning can
significantly improve the network's performance (Section 3). We conclude with a general discussion of the

network's behavior during search and why the learning algorithm is effective (Section 4).

2 The Guarded Discrete Stochastic (GDS) Network

The problem we consider is a general binary CSP involving a set of N variables XI,..., Xjv with domains
Dr,..., DN, and an associated set a set of constraints C..(Xj, Xa,), a : 1,..., M. A binary constraint is a

subset of the Cartesian product Dj × Dh which specifies combinations of values which are incompatible with
each other. A solution is an assignment of values to all of the variables so that no constraints are violated. We

are interested here in the problem of finding at least one satisfying assignment (the satisficing problem).

We first consider how to represent this CSP by a Hopfield discrete neural network [7] of which the GDS network

is a generalization. Let the output (zero or one) of the neuron labeled ij be denoted by ytj, where i refers
to the ith variable X_ and j refers to d_j, the jth value in the domain Di. When viewed as a matrix (with
a variable column width depending on cardinality of the domains Di), rows are associated with variables and
columns are associated with values.

The assignment of d_d to Xi is represented by Yi/ = 1. The input zij to neuron ij is the sum of a bias term
b_j and a weighted sum of the output of other neurons:

"(j = _ 14Zij,m_Ymn + bij (i)

W_j,mn is called the connection matrix. In the two-state neuron model the output is related to the input by:

1 mtj_>0Y/J = 0 otherwise (2)

In the discrete Hopfield model with no transmission delays, neurons are selected at random and their output is

set according to Eqn. (2). When the connections are symmetric (W_j,,,,_ = W,,,_#j) and there is no self-feedback

(W,j,_j : 0), then there exists a bounded "energy" function which the network minimises as it runs. The biases
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b_j and connection weights W_j,n,,z can be chosen so that a solution to the CSP is a minimum of this energy
function as follows (see Fig. 1):

b,j =/3 (3)

-w if(,_j,dm,.) 6 C.(Xi,X,n)
W_j,m,, = -. ifi = ra, j # n (4)

0 otherwise

where ,8 and w, _/> /3 are positive constants. The first set of terms in Eqn. (4) implement the constraints

Ca, i.e. if a pair of assignments is forbidden by any constraint, then there is an inhibitory link between the
corresponding neurons. The second set of terms represents the condition that at most one value can be assigned
to each variable.

000

Figure I. A Hopfield network for a binary CSP: variables are represented by rows, value assignments by neurons on

each row (labelled by the domain value they represent). Here it is assumed that each variable Xi can assume one of
k values. The network includes s set of symmetric inhibitory links that permit only one value to be assigned to each

variable (solid lines) and another set that represents the binary constraints (one example is shown as a heavy dashed

line).

ff the network update algorithm Eqn. (2) is applied to this problem it is quickly found that, while the network

sometimes converges to an assignment for all N variables, it frequently comes to rest in a stable state with
n < N neurons active: these are local minima of the energy function. The GDS network introduces a way to

escape local minima that is especially well-suited for discrete networks: the asymmetric coupling of the main

network to an auxiliary network (Fig. 2). The auxiliary network, which we call a guard network, is designed to
enforce an additional important condition of the problem, namely that when a solution is found, every variable

must have an assigned value. When this condition is enforced, states with n < N neurons active are no longer

stable, and so the network continues to evolve.

The guard network consists of an additional N neurons, one for each variable which must have an assigned

value. A guard neuron with bias _, input zf, and output _ is connected to each neuron on the row i that it

guards. The input to the guard is zf = -0 _-_4 Y_J' while the contribution by the guard to the input of neuron

ij is _b_. If we choose the guard bias to be b_ = _, > 0 and choose 0 > 7 and _b> 0 sufficiently large, then
the guard on row i will fire only when no neurons on row i are firing. When the guard fires, a large positive

value # is added to the input of each neuron on the row: if # is chosen to be large enough to overcome the
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effect of any number of inhibitory links, then any neurons on the row can transition from off to on, thereby
reducing the energy of the network. Thus local minima due to the absence of any firing neurons on a row are

eliminated. The price paid for this desirable feature is that the symmetry of the connection matrix for the

combined network is lost, and thus convergence to a stable state is no longer guaranteed. In practice some

stopping criterion must be specified, which may be problem-dependent.

X
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X
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Main Guard ___
[ network I f'_ network ]

.............................................. ..'. '_ .....

000

x
.......... "................................ A

Figure 2. The GDS network: the network of Fig. 1 is coupled asymmetrically to a guard network to enforce the condition

that each variable must have an assigned value (dotted lines).

We have found that it is most effective to update the guard network synchronously with transitions on the

main hoard, i.e. each guard's output is always maintained consistent with its input according to Eqn. (2). This
essentially treats the guards as a separate network which runs on a faster timescale than the main network.
We have also found that random selection of which neuron in the main network to examine next is much less

effective than selecting at random one set of neurons which are monitored by one guard neuron, then changing

the state of the neuron in the set whose output is "most inconsistent" with its input (if any). That is, we select
the neuron with the maximum value of either

z_jifylj= 0 and z_j> 0, or I_#IifI/_j= 1 and zO < 0, (5)

with tiesbroken arbitrarily.

The initialstateof the network isan important consideration.Iffora particularCSP thereissome heuristic

which can identifyvariableassignments which are "likely"to be part ofa solution,then thesecan be used to

specifythe initialnetwork state.If,as isoftenthe case,no such assignments are known, then itisappropriate

to startthe network with allneurons in the off"stateI/i#= 0. In eithercase,the initialstatewillusuallyhave

nearly allneurons in the offstate. This leads to the observationthat the connections Wi#,,r,rLneed not be

pre-computed and stored,but may be calculatedonly when neuron mn firsttransitionsfrom offto on. (Ifthe

connectionscan be computed efficientlyenough then itmay not even be effectiveto storethem at all).This

can permit a largereductionin storagerequirements:even though the number of possibleconnectionsmay be

large,only a small fractionmay be instantiatedduring any given set ofruns ofthe network.

An example ofthe GDS network'sperformance isprovided by the well-studiedN-queens problem ofplacingN

queens on an N x N chessboard,one on each row, so thatno queen threatensanother. This can be represented

as a binary CSP with N variablesrepresentingthe chessboard rows and N valuesrepresentingthe columns in
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which the queens are placed. The connections W_j,m,_ encode the constraints that no two queens can threaten
each other along columns or diagonals. Row threats are automatically disallowed since variables can only have

one assigned value.

N-queens has been used as s model problem in several studies of improvements to regular backtracking search:

see especially Stone and Stone [13] who conducted an investigation of backtracking and most-constrained search

for N up to 96. They suggest that backtracking has exponential, and most-constrained search has polynomial

time complexity over the range of N they studied, but they note that they were unable to find solutions in a
"reasonable amount of time" for N = 97. A continuous neural network representation of the 8-queens problem

was investigated in [5].

Solutions to the N-queens problem are easily found by the GDS network. In Fig. 3 is plotted the median

number of neuron transitions (0 --* 1 and 1 --_ 0) required for the network to converge to a solution (estimated

from a large number of runs) versus linear board-size N. The result is linear in N for large N as shown by

the straight line fit. Note that a minimum of N 0 --* 1 transitions is required to proceed directly from the

"empty board" initial state (_j = 0 for all ij) to a solution with no "wandering". The surprising result is that

only s proportionately small number of ezceu transitions beyond this minimum is required to find solutions:

empirically this excess is found to be about 0.16N. To check that this behavior holds for very large N we have
run the network with N as large as 1024. This corresponds to a main network containing N 2 _, 10 s neurons,

with > 10 ° potentially non-zero connections. A solution to the N = 1024 problem was found to require only

1196 transitions and required a wall-clock time of less than 12 minutes on a 16Mb TI Explorer II workstation.
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Figure 3. N-queens: Median number of transitions to convergence vs. linesx board-sLse N.

The expected time complexity of the GDS network on the N-queens problem is O(N2), since the expected

number of transitions to convergence is (empirically) O(N) and each transition requires adding a connection

weight to the inputs of O(N) inhibited neurons (and the overhead associated with each transition is also O(N)).
The space complexity of the network is O(N2), even though the number of non-sero connections is O(NS).

Further results of the GDS network on N-qneens and other CSPs is provided in [10].
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3 The GDS Learning Algorithm

It has long been known that pre-processing constraints in CSPs can lead to dramatic improvements in the

effectiveness of backtracking search [1,2]. These techniques, known as consistency methods, are based on

the deduction of additions/constraints from those explicitly provided. These additions/constraints can be

exploited in backtracking search to avoid repetitively exploring sets of assignments that cannot be part of any

solution. While these techniques have generally been applied before search begins, Dechter [12] has shown how
they can be applied during the search process to provide a kind of "]earning while searching". An analogous

learning process can be defined for the GDS network by exploiting the fact that network connections need

not be instantiated until they are needed, i.e. when a neuron participating in a constraint transitions from off

to on. Learning can be based on instantiated connections only, leading to changes in the network biases and

connection strengths that improve the performance of the network from one run to the next.

The GDS learning algorithm we have developed is independent of the problem represented by the network.
It operates as a separate module which analyses the results of one or more "training" runs to update the

network bias values, connection strengths, or both. Training consists of the following series of steps which can
be repeated as often as desired:

I. Starting with all neurons off (_j = 0 for All ij), run the network for a fixed number of transitions T_,,i,_

and record the connections for each neuron ij which transitions from 0 to 1. Denote the set of all neurons

which have transitioned from 0 to I, since the network was initiallsed, as ON.

2. Reset all neurons to their off state.

3. For each neuron ij in ON with z_j _ 0, set its state to on (_j = 1) and turn off all others. Update

the inputs of any other neurons mn based on the recorded connections W,,_,_jj _ 0. If mn is in ON and
z,_,, _> 0 and z,_ ( 0 for p _ 9, then set llm,_ = 1 and update inputs again. Repeat until no further
changes occur.

• update biases: if there is any row m such that a,_,t <_ 0 when bran _> 0 for all n, then set the bias of

ij to some value b_j < -_b (effectively removing ij from the network, i.e. deleting d/j from Di).

• update connections: if there is any mn such that z,_,_ < 0 when bran _ 0, then record the connection

coefficient W,n,_,_j = -w. This represents an induced constraint between Xi and Xm indicating that

dlj and d_,, are incompatible assignments and cannot be part of any solution.

Updating only the biases corresponds to a partial arc-consistency algorithm where only instantiated connections

are considered. Updating the connection weights corresponds to partial path-consistency, i.e. the recording of

additions/induced constraints. These two update schemes correspond in Dechter's nomenclature to "first-

order" and "second-order" learning, respectively. Note that updating the connections as described above does

not correspond to full path-consistency even on the set ofinstantiated connections, since additions/constraints

could possibly be induced by those discovered during a training step. Thus the computations/effort expended

in training is much less than that required to perform full arc- or path-consistency [14,15].

We have compared the results of applying this learning algorithm to the results obtained from running the

network on only those constraints provided explicitly in the definition of the problem. Two CSPs have been

used in this investigation: the random CSP used by Dechter and Pearl in their study of Advised Backtracking

[4], and the Zebra problem used by Dechter in her investigation of learning in backtracking search [12].

3.1 The Dechter-Pearl Problem

This problem is one of a family of random CSPs [16] specified by four parameters: the number of variables N,
the number of values h each variable can assume, the probability/h of having a constraint between any pair

of variables, and the probability P2 that a constraint s/lows a given pair of values. The behavior of the GDS
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Figure 4. Dechter-Pearl CSP: median number of transitions to convergence vs. number of first-order training runs for

three randomly-generated problem instances (fined squares, open squares, and crosses).
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Figure 5. Dechter-Pearl CSP: median number of transitions to convergence vs. number of second-order training runs

for the same problem instances as Fig. 4.

network on this problem for k : 5, Pl : 0.5, and P2 = 0.6 was reported in [10] for a range of N between 30

and 120. The median number of transitions T required for the network to converge was found to be linear in

N: T _ 35 + 2.5N.

Here we consider the case N : 30 and investigate the effectiveness of the bias and connection learning algorithms

on the performance of the network. Three randomly-generated problem instances were generated and subjected

373



to a variablenumber oftrainingsessionsrangingfrom one tosix.One setofruns consistedofbiasupdates only

(first-orderlearning);the other consistedof both bias and connection updates (second-orderlearning).Each

trainingrun was arbitrarilylimitedto T¢,,_,_= N transitions.Each seriesof trainingruns was startedfrom

the explicitconstraintsonly,i.e.thereisno correlationofthe resultsas the number oftrainingruns increases.

The resultsoffirst-orderlearningare plottedin Fig.4 which shows the median number of transitionsrequired

for the network to converge to a solutionvs. the number of trainingruns. Note that a minimum of N = 30

transitionsisrequired to proceed directlyfrom the initialnetwork stateYlj= 0 to s solution.Itcan be seen

that thereisan approximately steady decreasein the median number of transitions,from about 115 with no

trainingto an averageof about 65 with sixtrainingruns.

Second-order learning(Fig.5) shows a more significantperformance improvement with the firstfew training

runs, but littlefurtherimprovement with additionaltraining. After only three trainingsteps the median

number oftransitionshas decreasedfrom 115 to an averageofabout 45.

3.2 The Zebra Problem

This significantly harder problem was described by Dechter (see Appendix II of [12]) and was used in her study
of learnin 8 during backtrackin 8 search. The problem consists of N = 25 variables, each with 5 possible values.

The GDS network without learning converges to a solution only about 10% of the time when limited (arbitrarily)
to 9N transitions. Although first-order learning makes only a marginal difference in the performance of the

network, second-order learning shows a dramatic improvement. Fig. 6 shows the probability of convergence in
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Figure 6. The Zebra Problem: probability of converKence in 9N transitions vs. number of training runs, with "oo"

representing a fully path-consistent version of the problem.

9N transitions vs. number of second-order training runs. The results for _oo" are for s fully path-consistent

version of the problem and represents the best that can be achieved by increasing the amount of training. Even

a small number of training runs can clearly improve the network performance by a significant margin.
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4 Discussion

The behavior of the GDS network can be likened to a stochastic backtracking algorithm which implements a

number of "heuristics" to expedite search. Stochastic, in contrast to regular backtracking, means that the order
of instantiation of variables is not pre-determined: backtracking makes a systematic exploration of the search

tree, while the network stochastically probes the tree in directions that tend to minimize the network energy.

Since the network permits temporary inconsistencies in variable assignments at any point until it converges,
it can make "lateral jumps" in the search tree to escape from sets of assignments that cannot be consistently

extended. These jumps appear to be useful in discovering consistent assignments, although their effectiveness

depends on the detailed structure of the search tree (as evidenced by the results on 3-Colorability in [10]).

The heuristics intrinsic to the network come into play when a partial instantiation cannot be consistently

extended. This corresponds to encountering a deadend during backtracking search. These network heuristics

cannot be strictly isolated (since extending partial assignments and backing out of deadends are simultane-
ous competing processes), but they can be loosely compared to those developed to improve the behavior of

backtracking algorithms:

• backjumping: when the network encounters a deadend it will randomly select an uninstantiated variable

and assign it a value which is certain to be inconsistent with one or more previously made assignments.
This entire set of inconsistent assignments is at once subject to revision: at least one will eventually be

retracted. This corresponds closely to the backjumpin8 or "go back to cause of failure" heuristic which

is known to improve the performance of regular backtracking, but is somewhat more general in that any

variable with no permitted assignments can be considered the "failure", and any variable with which it
is inconsistent can be considered the "cause".

• value selection: when the network extends a partial instantiation by assigning a value to an unassigned

variable, any value not forbidden by some constraint is equally likely to be chosen. However, at a

deadend, values are selected which are least inhibited by any current assignments (since the neuron

input is proportional to the number of constraints that forbid the assignment). This represents a kind
of value selection heuristic which undoes a minimal set of previous assignments in order to escape from

the deadend. Only value assignments that participate in such minimal sets will be made by the network

update algorithm Eqn. (5).

The GDS network is a general constraint satisfaction search method, encoding no domain knowledge other than

value and value-pair inhibitions. Nevertheless the convergence of the network on some classes of problems is

remarkably fast. This, along with the ease with which the network can be set up for new problems, makes it an

attractive approach for some classes of large CSPs. We have shown here that the performance of the network

can be significantly improved by adding a "learning" module that analyzes the results of one or more training
runs and updates the initial values of the neuron biases and connection strengths. The learning algorithm is

independent of the problem represented by the network. In terms of the network heuristics discussed above, the

effectiveness of this type of learning is due to the resulting increase in the sises of minimal sets of inconsistent
variables. As a result, inconsistent sets are encountered after fewer transitions, and longer and more relevant

"jumps" in the search space are made possible. For some types of problems this dramatically improves the

speed of convergence of the network.
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